

From Fundamentals to Recent Advances A Tutorial on Keyphrasification

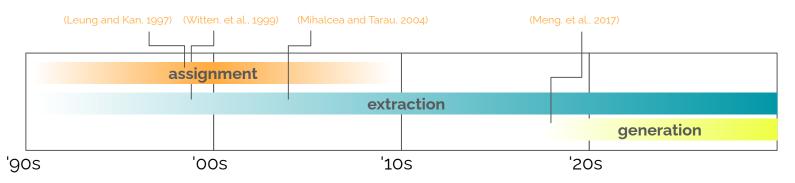
Part 1.3 Traditional Methods for Keyphrase Extraction

Rui Meng, Debanjan Mahata, Florian Boudin FCIR 2022

MOODY'S ANALYTICS

An overview of history

- Keyphrases were initially introduced as a means for cataloging and indexing documents in digital libraries (Fagan, 1987)
 - Assignment methods: assign thesaurus entries (e.g. MeSH/UMLS in PubMed)
 - Extractive methods: identify important phrases from text
 - Generative methods: produce phrases that summarize the content



(Fagan, 1987) Automatic phrase indexing for document retrieval, SIGIR

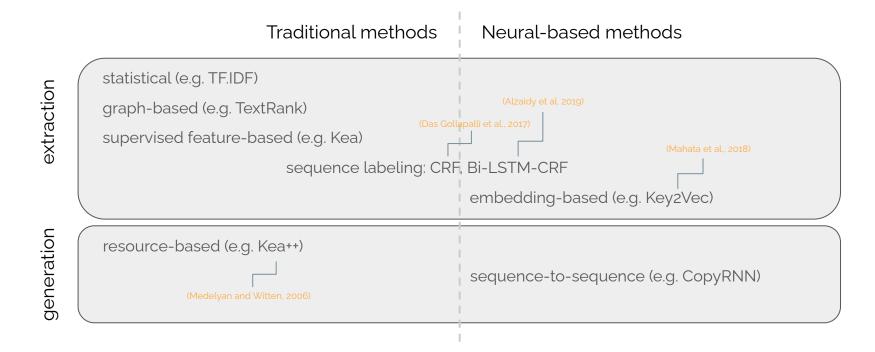
(Leung and Kan, 1997) A statistical learning approach to automatic indexing of controlled index terms. JASIS.

(Witten et al., 1999) Kea: Practical automatic keyphrase extraction, D

(Mihalcea and Tarau, 2004) TextRank: Bringing order into text, EMNL

(Meng et al., 2017) Deep keyphrase generation, ACL.

Taxonomy of Methods



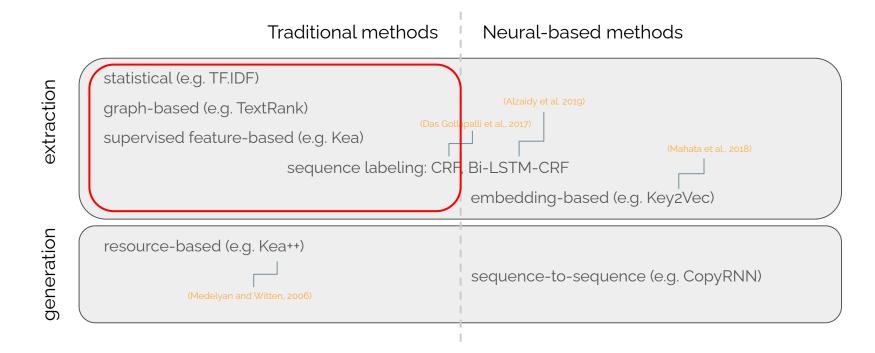
Medelyan and Witten, 2006) Thesaurus based automatic keyphrase indexing. JCDL.

(Das Gollapalli et al., 2017) Incorporating expert knowledge into keyphrase extraction. AAAI.

Mahata et al., 2018) Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles using Phrase Embeddings. NAACI

Alzaidy et al. 2019) Bi-LSTM-CRF Sequence Labeling for Keyphrase Extraction from Scholarly Documents، WWV

Taxonomy of Methods



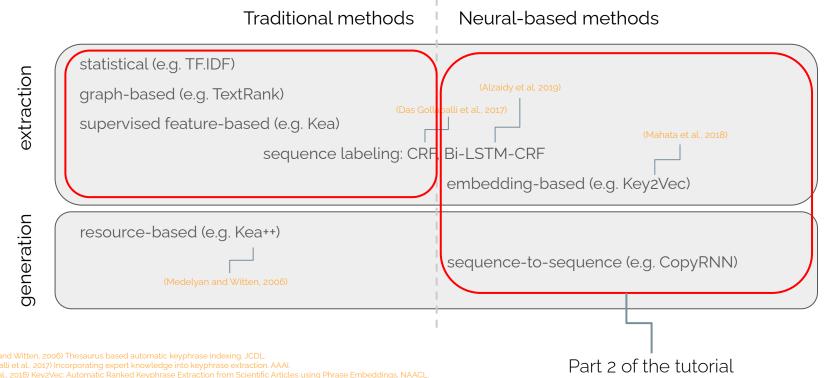
(Medelyan and Witten, 2006) Thesaurus based automatic keyphrase indexing. JCDL.

(Das Gollapalli et al., 2017) Incorporating expert knowledge into keyphrase extraction. AAAI.

Mahata et al., 2018) Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles using Phrase Embeddings. NAACI

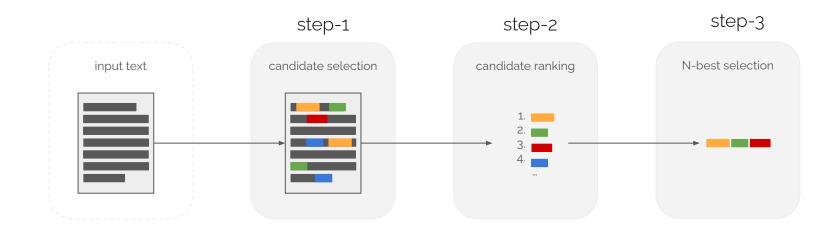
الالاalzaidy et al. 2019) Bi-LSTM-CRF Sequence Labeling for Keyphrase Extraction from Scholarly Documents، WWV

Taxonomy of Methods

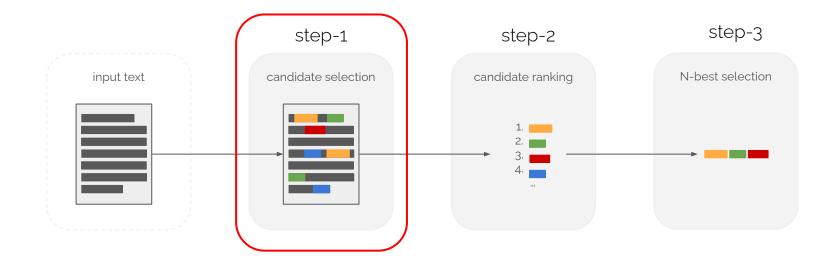


(Alzaidy et al. 2019) Bi-LSTM-CRF Sequence Labeling for Keyphrase Extraction from Scholarly Documents, WWW

Traditional Methods for keyphrase extraction



Traditional Methods for keyphrase extraction



Candidate selection

ECIR 2022

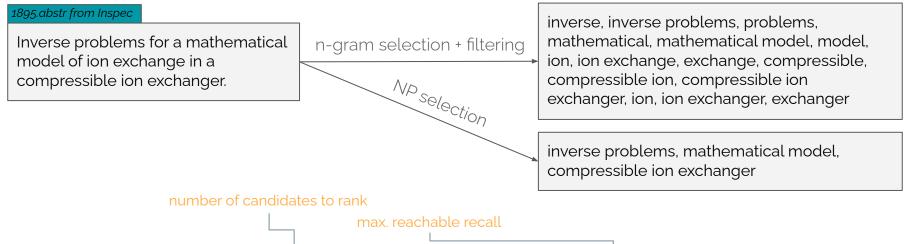
- Identify the words and phrases that are eligible to be keyphrases
 - Mostly noun phrases, composed of up to three words (~90%)

5 most frequent POS-patterns of gold keyphrases in kp20k

Freq.	POS-Pattern	Example
21%	Noun	graphs
17%	Noun Noun	similarity measure
15%	Adj Noun	empirical study
5%	Verb	denoising
4%	Adj Noun Noun	ant colony optimization

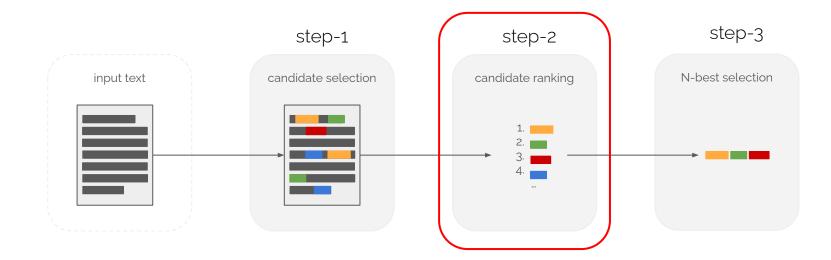
- Requires text pre-processing
 - tokenization, sentence splitting, POS-tagging, NP-chunking, NER

Candidate selection (cont.)



- Balances the **search** space and the **upper bound** performance
- Apply filtering techniques to remove spurious candidates
 - \circ e.g. PDF to text \rightarrow muddled sentences, tables, equations, etc.
 - simple text cleaning \rightarrow ~+2% in f@10 (boudin et al. 2016)

Traditional Methods for keyphrase extraction



Candidate ranking

- Assign a weight/score to each keyphrase candidates
 - candidates are ranked using a weighting function (unsupervised)
 - candidates are classified as keyphrase or not
- Statistical methods (unsupervised)

e.g. TF, IDF, PMI, LM

• frequency-based, position-based, lexical/syntactic-based features

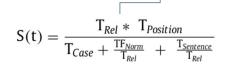
e.g. candidate offsets, distribution

 $\delta_{\mathbf{w}}(LM_{\mathbf{fg}}^N \parallel LM_{\mathbf{bg}}^1)$

e.g. PoS pattern, casing

(supervised)

o commonly-used methods are TF.IDF, LM (Tomokiyo and Hurst, 2003), YAKE (Campos et al., 2020)

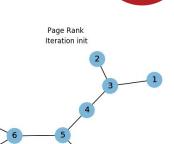


Candidate ranking (cont.)

- Graph-based ranking methods (unsupervised)
 - Seminal work TextRank (Mihalcea and Tarau, 2004) \bigcirc
 - build a graph representation of the document where nodes are 1. lexical units and edges are semantic relations between them
 - rank nodes using a graph-theoretic measure, from which the 2. top-ranked ones are used to form keyphrases
- Overview of existing methods
 - node ranking functions : k-core (Tixier et al., 2016), PositionRank (Florescu and Caragea, 2017) 0
 - topic-based methods : TopicRank (Bougouin et al., 2013), TopicalPageRank (Sterckx et al., 2015) \bigcirc
 - external-resources : ExpandRank (Wan and Xiao, 2008), CiteTextRank (Gollapalli and Caragea, 2014) 0

Page Rank Iteration init

 $S(c_i) = (1 - \lambda) + \lambda \cdot \sum_{c_j \in \mathcal{I}(c_i)} \frac{w_{ij} \cdot S(c_j)}{\sum_{c_j \in \mathcal{I}(c_i)} w_{jk}}$



Candidate ranking (cont.)

- Keyphrase extraction as a binary classification task (supervised)
 - Train to classify candidates as **keyphrase** or **not keyphrase**
 - o commonly-used methods : Kea (Witten et al., 1999), WINGNUS (Nguyen and Luong, 2010)

$$P[yes] = \frac{Y}{Y + N} P_{TF \times dDF} [t \mid yes] P_{distance} [d \mid yes]$$

F1-F3 (*n*): TF×IDF, term frequency, term frequency of substrings.

F4-F5 (*n*): First and last occurrences (word off-set).

F6(n): Length of phrases in words.

F7 (*b*): Typeface attribute (available when PDF is present) – Indicates if any part of the candidate phrase has appeared in the document with bold or italic format, a good hint for its relevance as a kevohrase.

F8 (*b*): InTitle – shows whether a phrase is also part of the document title.

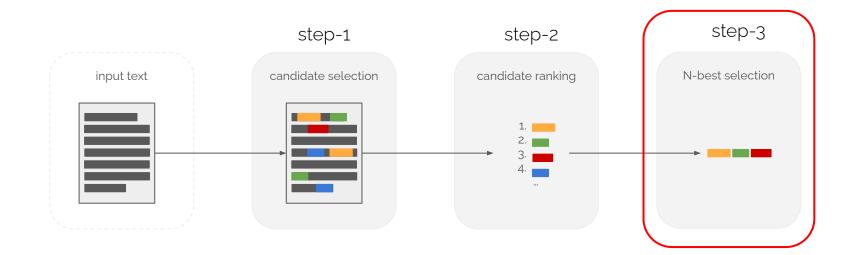
F9 (*n*): TitleOverlap – the number of times a phrase appears in the title of other scholarly documents (obtained from a dump of the DBLP database).

F10-F14 (b): Header, Abstract, Intro, RW, Concl – indicate whether a phrase appears in headers, abstract, introduction, related work or conclusion sections, respectively.

F15-F19 (*n*): HeaderF, AbstractF, IntroF, RWF, ConcIF - indicate the frequency of a phrase in the headers, abstract, introduction, related work or conclusion sections, respectively.

Require few training samples, outperform unsupervised methods (Gallina et al., 2020)

Traditional Methods for keyphrase extraction



N-best selection

- Select the N highest-ranked candidates as keyphrases
 - 1 redundancy within the selected keyphrases should be minimized!
 - Major issue for methods that rank candidates according to their component words
 - Over-generation errors (Hasan et al., 2014)

Rank	keyphrase
1.	machine learning
2.	computer algorithms
3.	-machine-
4.	learning
3.	experience
4.	artificial intelligence
_	, , ,

5. study

Results

• Large scale evaluation of traditional methods (Gallina et al., 2020)

			Scientific articles					Paper abstracts						News articles					
		PubMed		ACM		SemEval		Inspec		www		KP20k		DUC-2001		KPCrowd		KPTimes	
	Model	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP	F@10	MAP
Statistical methods (unsupervised)	FirstPhrases	15.4	14.7	13.6	13.5	13.8	10.5	29.3	27.9	10.2	9.8	13.5	12.6	24.6	22.3	17.1	16.5	9.2	8.4
	$TF \times IDF$	16.7	16.9	12.1	11.4	17.7	12.7	36.5	34.4	9.3	10.1	11.6	12.3	23.3	21.6	16.9	15.8	9.6	9.4
Graph-based methods (unsupervised)	TextRank	1.8	1.8	2.5	2.4	3.5	2.3	35.8	31.4	8.4	5.6	10.2	7.4	21.5	19.4	7.1	9.5	2.7	2.5
	PositionRank	4.9	4.6	5.7	4.9	6.8	4.1	34.2	32.2	11.6^{\dagger}	8.4	14.1^{\dagger}	11.2	28.6^{\dagger}	28.0^{\dagger}	13.4	12.7	8.5	6.6
	MultipartiteRank	15.8	15.0	11.6	11.0	14.3	10.6	30.5	29.0	10.8^{\dagger}	10.4	13.6^{\dagger}	13.3^{\dagger}	25.6	24.9^{\dagger}	18.2	17.0	11.2^{\dagger}	10.1^{\dagger}
Classification method (st	Ipervised) Kea	18.6^\dagger	18.6^\dagger	14.2^\dagger	13.3	19.5^\dagger	14.7^\dagger	34.5	33.2	11.0^{\dagger}	10.9^{\dagger}	14.0^{\dagger}	13.8^\dagger	26.5 [†]	24.5^\dagger	17.3	16.7	11.0^{\dagger}	10.8^{\dagger}
Neural-based method	supervised) CopyRNN	24.2^{\dagger}	25.4^\dagger	24.4^{\dagger}	26.3^{\dagger}	20.3^{\dagger}	13.8	28.2	26.4	22.2^\dagger	24.9^{\dagger}	25.4^{\dagger}	28.7^{\dagger}	10.5	7.2	8.4	4.2	39.3^\dagger	50.9^\dagger

- Outperformed by neural-based methods on 6/9 datasets
 - Still useful when no training data is available
 - Three models could be considered as baselines TFxIDF, MultipartiteRank and Kea

ECIR 2022

Summary

• Pros

- Efficiency
- Interpretability
- Generalization (languages, domains)
- Cons
 - Pipeline approach : errors are propagated
 - Produce only present keyphrases
 - Overall performance
- A basis for unsupervised neural extractive methods (Part 2.1 of the tutorial)
- Used for producing silver-standard training data for unsupervised keyphrase generation (Part 2.2 of the tutorial)

Part I - Outline

- Introduction to keyphrasification
 - Definitions and applications
- Datasets and evaluations
- Traditional methods for keyphrase extraction
- Hands-on practice with PKE

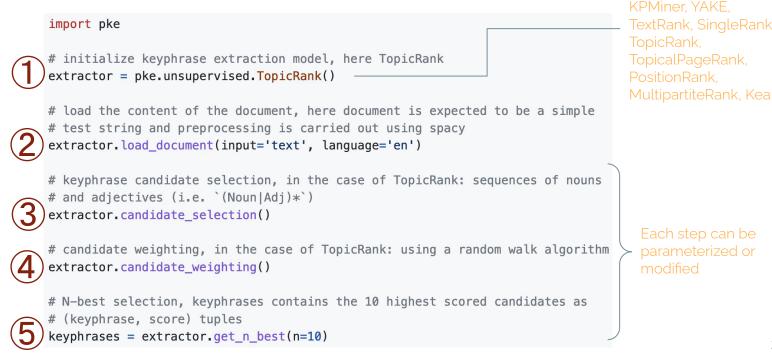
ECIR 2022

Overview of pke

- pke is an open source python-based keyphrase extraction toolkit
- end-to-end pipeline in which each component can be modified
- Installation

Overview of pke (cont.)

• standardized API for extracting keyphrases from a document



Hands-on session in 1 min

https://github.com/keyphrasification/hands-on-with-pke

Part 1 : Getting started with pke and keyphrase extraction Part 2 : Model parameterization Part 3 : Benchmarking models